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Abstract
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using Bayesian methods. These methods allow for a comparison to other optimization
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1 Introduction

Markowitz (1952) provides the foundation for the current theory of asset allocation. He

describes the task of asset allocation as having two stages. The first stage “. . . starts with

observation and experience and ends with beliefs about the future performances of available

securities.” The second stage “. . . starts with the relevant beliefs . . . and ends with the

selection of a portfolio.” Although Markowitz only deals with the second stage, he suggests

that the first stage should be based on a “probabilistic” model. This paper introduces

methodology for addressing both stages.

In a less well known part of Markowitz (1952), he details a condition whereby mean-

variance efficient portfolios will not be optimal – when an investor’s utility is a function of

more than two moments, e.g. mean, variance, and skewness.1 While Markowitz did not work

out the optimal portfolio selection in the presence of skewness and other higher moments,

we do.

The breadth of Markowitz’s approach is summarized in the resulting mean-variance ef-

ficient frontier. Assuming a ‘certainty equivalence framework’ where point estimates from

stage one are given, an efficient frontier can be constructed by solving an appropriate set of

quadratic programming problems. Under the assumption that investors have utility that is a

function of the point estimates (i.e. their expected utility equals the utility of the expected

value of the parameters), then the resulting frontier offers a guide for optimal portfolio se-

lection for a large class of utility functions. This approach frees investors from having to

explicitly state their utility and the second stage reduces to the task of choosing a point on

the efficient frontier, see Kallberg and Ziemba (1983).

Several authors have proposed advances to this approach for selecting an optimal portfo-

lio. Some address the empirical evidence of higher moments; Athayde and Flôres (2002) and

Adcock (2002) give methods for determining higher dimensional ‘efficient frontiers’, but they

remain in the certainty equivalence framework for selecting an optimal portfolio, addressing

only the second stage of the asset allocation task. Like the standard efficient frontier ap-

1See Markowitz (1952, p.91)
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proach, these approaches have the advantage that for a large class of utility functions, the

task of selecting an optimal portfolio reduces to the task of selecting a point on the high

dimensional ‘efficient frontiers’. As the dimensionality of the efficient frontier increases, it

become less obvious that an investor can easily interpret the geometry of the frontier and

reasonably select a portfolio. Other three moment optimization methods include using neg-

ative semivariance inplace of variance (see Markowitz 1959, and Markowitz et al. 1993). A

similar measure of downside risk is also incorporated by Feiring et al. (1994), and Konno

et al. (1993) use an approximation to the lower semi-third moment in their Mean-Absolute

Deviation-Skewness portfolio model. In addition, these methods rest on the assumption that

an investor’s expected utility is reasonably approximated by the utility of the expected value

of the parameters. Johannes et al. (2002) investigate market timing using a model with

correlation between volatility and returns in a Bayesian portfolio selection setting.

In the mean-variance setting, a number of researchers have investigated this assump-

tion and have shown that efficient frontier optimal portfolios, based on sample estimates,

are highly sensitive to perturbations of these estimates. Jobson, Korkie and Ratti (1979)

and Jobson and Korkie (1980) point out these problems, and suggest the use of shrinkage

estimators, also see Simbea and Mulvey (1998). This ‘estimation risk’ comes from both

choosing poor probability models and from ignoring parameter uncertainty, holding with the

assumption that the expected utility equals the utility of the expected value.

Others have ignored higher moments, but address the issue of estimation risk. Frost

and Savarino (1986, 1988) show that constraining portfolio weights, by restricting the action

space during the optimization, reduces estimation error. Jorion (1992) proposes a resam-

pling method aimed at estimation error. Using a Bayesian approach, Britten-Jones (2002)

builds on the idea of constraining weights and proposes placing informative prior densities

directly on the portfolio weights. Others propose methods that address both stages of the

allocation task and select a portfolio that optimizes an expected utility function given a

probability model. From the Bayesian perspective, Treynor and Black (1973) propose the

basic idea of using investors’ view in combination with historical data. Jorion (1986) and

Frost and Savarino (1986, 1988) use a traditional Bayesian shrinkage approach. Zellner
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and Chetty (1965), Klein and Bawa (1976) and Brown (1978) emphasize using a predictive

probability model (highlighting that an investor’s utility should be given in terms of future

returns and not parameters from a sampling distribution). Greyserman et al. (2002) con-

sider a Hierarchical Bayesian predictive probability model, estimate expected utilities using

an ergodic average and select an optimal portfolio using a quadratic programming algorithm.

Pástor (2000) and Black and Litterman (1992) propose using asset pricing models to provide

informative prior distributions for future returns. In an attempt to maintain the decision

simplicity associated with the efficient frontier and still accommodate parameter uncertainty,

Michaud (1998) proposes a sampling based method for estimating a ‘resampled efficient fron-

tier’ (see Scherer 2002 for further discussion). While this new frontier may offer some insight,

using it to select an optimal portfolio implicitly assumes that the investor has abandoned

the maximum expected utility framework. In addition, Jensen’s inequality dictates that the

resampled efficient frontier is in fact suboptimal.

Our approach advances previous methods by addressing both higher moments and esti-

mation risk in a consistent Bayesian framework. As part of our “stage one” approach (i.e.,

incorporating observation and experience), we specify a Bayesian probability model for the

joint distribution of the assets, and discuss prior distributions. The Bayesian methodology

provides a straight forward way to calculate and maximize expected utilities based on pre-

dicted returns. This leads to optimal portfolio weights in the second stage which overcome

the problems associated with estimation risk. In addition to discussing our estimation and

optimization approach, we empirically investigate the impact of simplifying the asset alloca-

tion task. For two illustrative data sets we demonstrate the difference in expected utility that

results from ignoring higher moments, using a sampling distribution instead of a predictive

distribution and assuming that the expected utility equals the utility of the expected values.

In addition, we demonstrate the loss in expected utility (explained by Jensen’s inequality)

that comes from using the widely used approach proposed by Michaud (1998).

Our paper is organized as follows. In the second section we discuss the importance

of higher moments and provide the setting for portfolio selection and Bayesian statistics

in finance. We discuss suitable probability models for portfolios and detail our proposed
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framework. In the third section, we show how to optimize portfolio selection based on

utility functions in the face of parameter uncertainty using Bayesian methods. Section

four empirically compares different methods and approaches to portfolio selection. Some

concluding remarks are offered in the final section. The appendix contains some additional

results and proofs.

2 Higher moments and Bayesian probability models

A prerequisite to the use of the Markowitz framework is either that asset returns are nor-

mally distributed or that utility is only a function of the first two moments. The Markowitz

framework implies normal distributions for asset returns, but it is well know that financial

instruments are not normally distributed. Studying a single asset at a time, empirical ev-

idence suggests that asset returns typically have heavier tails than implied by the normal

assumption and are often not symmetric, see Kon (1984), Mills (1995), Peiro (1999) and

Premaratne and Bera (2002).2 Our investigation of multiple assets builds on these empirical

findings and indicates that the existence of ‘co-skewness’, which could be viewed as cor-

related extremes, is often hidden when assets are considered one at a time. To illustrate,

Figure 1 contains the kernel density estimate and normal distribution for the marginal daily

returns of two stocks (Cisco Systems and General Electric from April 1996 to March 2002)

and Figure 2 contains contour plots based on their joint returns.

Insert Figures 1 and 2 here

While the marginal summaries suggest almost no deviation from the normality assumption,

the joint summary clearly exhibits a high degree of co-skewness, suggesting that skewness

may have a larger impact on the distribution of a portfolio than previously anticipated.

2See also Fama (1965), Arditti (1971), Blattberg and Gonedes (1974), Aggarwal et al. (1989), Aggarwal

(1990), Sanchez-Torres and Sentana (1998), Hwang and Satchell (1999), Peiro (1999), Hueng and Brooks

(2000), Machado-Santos and Fernandes (2002)
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2.1 Economic importance

Markowitz’s intuition for maximizing the mean while minimizing the variance of a portfolio

comes from the idea that the investor prefers higher expected returns and lower risk. Ex-

tending this concept further, most would agree that investors prefer a high probability of an

extreme event in the positive direction over a high probability of an extreme event in the

negative direction. From a theoretical perspective, Arrow (1971) argues that desirable util-

ity functions should exhibit decreasing absolute risk aversion, implying that investors should

have preference for positively skewed asset returns. Experimental evidence of preference for

positively skewed returns has been established by Sortino and Price (1994) and Sortino and

Forsey (1996) for example. Levy and Sarnat (1984) do an empirical test on mutual funds and

find a strong preference for positive skewness. Harvey and Siddique (2000a,b) introduce an

asset pricing model that incorporates conditional skewness, and show that an investor may

be willing to accept a negative expected return in the presence of high positive skewness.3

An aversion towards negatively skewed returns summarizes the basic intuition that many

investors are willing to trade some of their average return for a decreased chance that they

will experience a large reduction in their wealth, which could significantly constrain their level

of consumption. Some researchers have attempted to address aversion to negative returns

in the asset allocation problem by abandoning variance as a measure of risk and defining a

‘downside’ risk that is based only on negative returns. These attempts to separate “good”

and “bad” variance can be formalized in a consistent framework by using utility functions

and probability models that account for higher moments.

While it is clear that skewness will be important to a large class of investors and shows

itself in the returns of the underlying assets (and as a result in the distribution of portfo-

3Also see Arditti (1967), Levy (1969), Jean (1971), Tsiang (1972), Jean (1973), Rubinstein (1973), Arditti

and Levy (1975), Kraus and Litzenberger (1976), Friend and Westerfield (1980), Scott and Horvath (1980),

Barone-Adesi (1985), Sears and Wei (1985, 1988), Ingersoll (1987), Lim (1989), Lai (1991), Tan (1991),

Nummelin (1995), Chunhachinda et al. (1997), Fang and Lai (1997), Faff (1998), Adcock and Shutes (1999),

Sornette et al. (2000a,b), Barone-Adesi et al. (2001), Bhattacharyya (2002), Dittmar (2002), Jurczenko and

Maillet (2001), Malevergne and Sornette (2002), and Polimenis (2002)
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lios), the question remains; how influential is skewness in terms of finding optimal portfolio

weights? To illustrate, consider the impact of skewness on the empirical distribution of a

collection of two-stock portfolios. For each portfolio, the portfolio mean is identical to the

linear combination of the stock means and the portfolio variance is less than the combination

of the stock variances, see Figure 3 for an illustration using three, two-stock portfolios. Un-

like the variance, there is no guaranteed that the portfolio skewness will be larger or smaller

than the linear combination of the stock skewness, and in practice we observe a wide variety

of behavior.

Insert Figure 3 here

This variety suggests that the mean-variance optimal criteria will lead to sub-optimal port-

folios in the presence of skewness. To accommodate higher order moments in the asset allo-

cation task, we must introduce an appropriate probability model. After giving an overview

of possible approaches, we formally state a model and discuss model choice tools.

2.2 Probability models for higher moments

Though it is a simplification of reality, a model can be informative about complicated sys-

tems. While the multivariate normal distribution has several attractive properties when it

comes to modeling a portfolio, there is considerable evidence that returns are non-normal.

There are a number of candidate distributions that include higher moments. The multi-

variate t-distribution is good for fat tailed data, but does not allow for asymmetry. The

non-central multivariate t-distribution also has fat tails and, in addition, is skewed. How-

ever the skewness is linked directly to the location parameter and is, therefore, somewhat

inflexible.

The log-normal distribution has been used to model gross returns on assets, but its

skewness is a function of the mean and variance, not a separate skewness parameter. Azzalini

and Dalla Valle (1996) propose a multivariate skew normal distribution that is based on the

product of a multivariate normal probability density function (pdf) and univariate normal

cumulative distribution function (cdf). This is generalized into a class of multivariate skew
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elliptical distributions by Branco and Dey (2001), and improved upon by Sahu, Branco and

Dey (2002) by using a multivariate cdf instead of univariate cdf, adding more flexibility, which

often results in better fitting models. Because of the importance of co-skewness in asset

returns, we propose advancing the multivariate skew normal probability model presented

in Sahu et al. (2002). An alternative to this model would be an advance of their skew

multivariate Student t-model. As the modified skew normal allows for both asymmetry and

heavy tails in a way that matches the data considered, we leave investigation of the skew

Student t-model as a point for future research.

The multivariate skew normal can be viewed as a mixture of an unrestricted multivariate

normal density and a truncated, latent multivariate normal density, or

X = µ + ∆Z + ε, (1)

where µ and ∆ are an unknown parameter vector and matrix respectively, ε is a normally

distributed error vector with mean 0 and covariance Σ and Z is a vector of latent random

variables. Z comes from a multivariate normal with mean 0 and an identity covariance and

is restricted to be strictly positive, or

Z =

(

2

π

)p/2

exp

{

−
1

2
Z ′Z

}

I{Zj>0}, for all j, (2)

where I{·} is the indicator function and Zj is the jth element of Z. In Sahu et al. (2002), ∆ is

restricted to being a diagonal matrix, which accommodates skewness, but does not allow for

co-skewness. Removing this restriction and allowing ∆ to be an unrestricted random matrix

results in a modified density and moment generating function, see Appendix A for details.

As with other versions of the skew normal model, this model has the desirable property

that marginal distributions of subsets of skew normal variables are skew normal (see Sahu

et al. , 2002 for a proof). Unlike the multivariate normal density, linear combinations of

variables from a multivariate skewed normal density are not skew normal. This does not,

however, restrict us from calculating moments of linear combinations with respect to the

model parameters, see Appendix A for the formula for the first three moments.

Even though they can be written as the sum of a normal and a truncated normal random
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variable, neither the skew normal of Azzalini and Dalla Valle (1996) nor Sahu et al. (2002)

are Lévy stable distributions.4

However with additional restrictions on the truncated components, both models can be

generalized as stable distributions (see Appendix A). The skew normal is similar in concept to

a mixture of normal random variables, however they are fundamentally different. A mixture

takes on the value of one of the underlying distributions with some probability and a mixture

of Normal random variables, results in a Lévy stable distribution. The skew normal is not

a mixture of normal distributions, but it is the sum of two normal random variables, one

of which is truncated, which results in a distribution that is not Lévy stable. Though it is

not stable, the skew normal has several attractive properties. Not only does it accommodate

co-skewness and heavy tails, but the marginal distribution of any subset of assets is also skew

normal. This is important in the portfolio selection setting because it insures consistency in

selecting optimal portfolio weights. For example, with short selling not allowed, if optimal

portfolio weights for a set of assets are such that the weight is zero for one of the assets

(i.e. the asset is not included because it is a poor performer in relation to the others),

then removing that asset from the selection process and re-optimizing will not change the

portfolio weights for the remaining assets.

Following the Bayesian approach, we assume conjugate prior densities for the unknown

parameters, i.e. a priori normal for µ and vec (∆), where vec() forms a vector from a matrix

by stacking the columns of the matrix, and a priori Wishart for Σ−1. The resulting full con-

ditional densities for µ and vec (∆) are normal, the full conditional density for Σ−1 is Wishart

and the full conditional density for the latent Z is a truncated normal. See Appendix A for

a complete specification of the prior densities and the full conditional densities. Given these

full conditional densities, estimation is done using a Markov chain Monte Carlo (MCMC)

algorithm based on the Gibbs sampler and the slice sampler, see Gilks et al. (1998) for a

4Lévy stable distributions are defined several ways. For example, a family of distributions X is stable if

for two independent copies of X , say X1 and X2, the sum X1 + X2 is also a member of that family. The

only stable distribution with finite variance is the normal distribution. It is easy to see that the sum of skew

normals is not a skew normal by examination of the moment generating function.
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general discussion of the MCMC algorithm and the Gibbs sampler and see Appendix A for

a discussion of the slice sampler.

2.3 Model choice

The Bayes factor (BF) is a well developed and frequently used tool for model selection which

naturally accounts for both the explanatory power and the complexity of competing models.

Several authors have discussed the advantages and appropriate uses of the Bayes factor; see

Berger (1985) and O’Hagan (1994). In O’Hagan’s (1994) discussion, he demonstrates the

well-established relationship between the Bayesian Information Criteria (BIC), also known

as the Schwartz Criteria, and the BF. As demonstrated, the BIC asymptotically approaches

−2 ln(BF) under the assumption that each model is equally likely a priori, which is an

assumption that we use.

For two competing models (M1 and M2), the Bayes factor:

BF =
Posterior odds

Prior odds
=

p(x|M1)

p(x|M2)
(3)

We use the fourth and final sampling based estimator proposed by Newton and Raftery

(1994) to calculate the BF.

3 Optimization

Markowitz defined the set of optimal portfolios as the portfolios that are on the efficient

frontier. Ignoring uncertainty inherent in the underlying probability model, the portfolio

that maximizes expected utility for a large class of utility functions is in this set. This

approach reduces the task of choosing an optimal portfolio to choosing the best portfolio

from the efficient frontier. When parameter uncertainty is explicitly considered, then the

efficient frontier can only be used as a guide for individuals with utility functions that are

linear combinations of the moments of the underlying probability model. In all other cases

the utility function must be explicitly stated, and the expected utility must be calculated

and maximized over the range of possible portfolio weights. For general probability models
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and arbitrary utility functions, calculating and optimizing the expected utility must be done

numerically, a task that is straightforward to implement using the Bayesian framework.

In practice many of the challenges associated with solving the complete asset allocation

problem are ignored leading to a number of simplifications.

3.1 Simplifications made in practice

3.1.1 Utility based on model parameters, not predictive returns

The relevant reward for an investor is the realized future return of their portfolio. Thus

the utility function, or optimization criterion needs to target future returns and not be a

function of model parameters, see Zellner and Chetty (1965), Brown (1976). It can be

argued (DeGroot, 1970; Raiffa and Schlaifer, 1961) that a rational decision maker chooses an

action by maximizing expected utility, the expectation being with respect to the posterior

predictive distribution of the future returns, conditional on all currently available data.

Because of computational issues and because the moments of the predictive distribution

are approximated by the moments of the posterior distribution, predictive returns are often

ignored and utility is frequently stated in terms of the model parameters.

To illustrate, let xo represent the current data up to the present and let x represent

future data. Let X = (x, Vx, Sx) be predictive summaries, where Vx = (x − m̄)(x − m̄)′,

Sx = Vx ⊗ (x − m̄)′ and

m̄ =

∫

x p(x|xo)dx

is the predictive mean given xo. Assuming a linear utility function, the predictive utility is

given by

upred(ω,X ) = ω′ x − λ [ω′ (x − m̄)]2 + γ [ω′ (x − m̄)]3 (4)

where λ and γ determine the impact of future variance and skewness. The expected utility,

becomes

Upred(ω) = ω′ E[x|xo]−λ ω′E[Vx|x
o] ω+γ ω′E[Sx|x

o] ω ⊗ ω = ω′ mp−λ ω′ Vp ω+γ ω′Sp ω ⊗ ω,

(5)
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where mp, Vp and Sp are the predictive moments of x. Often a parameter based utility

function is used in place of (4), or

uparam(ω, θ) = ω′ m − λ ω′ V ω + γ ω′ S ω ⊗ ω (6)

where θ = (m, V, S)5 are parameters representing the first three moments of the probability

model. The expected utility, becomes

Uparam(ω) = ω′ m̄ − λ ω′ V̄ ω + γ ω′ S̄ ω ⊗ ω, (7)

where m̄, V̄ and S̄ are the posterior means of θ. It is straightforward to show that the

predictive mean equals the posterior mean and that the predictive variance and skewness

equal the posterior variance and skewness plus additional terms, or

mp = m̄, Vp = V̄ + V ar(m|xo) and

Sp = S̄ + 3E(V ⊗ m|xo) − 3E(V |xo) ⊗ mp − E[(m − mp)
′(m − mp) ⊗ (m − mp)|x

o].

Substituting this into (5) gives an alternative form that is composed of Uparam(ω) plus other

terms.

Upred(ω) = ω′ m̄ − λ ω′ V̄ ω + γ ω′ S̄ ω ⊗ ω

− λ ω′ V ar(m|xo) ω + 3 γ ω E(V ⊗ m|xo) ω ⊗ ω

− 3 γ ω E(V |xo) ⊗ mp ω ⊗ ω − γ ω E[(m − mp)(m − mp)
′ ⊗ (m − mp)

′|xo] ω ⊗ ω.

For linear utility functions, stating utility in terms of the probability model parameters

implicitly assumes that the predictive variance and skewness are approximately equal to

the posterior variance and skewness, an assumption which often fails in practice. This

assumption becomes even more strained for arbitrary, non-linear utility functions.

3.1.2 Maximize something other than expected utility

Given that utility functions can be difficult to integrate, various approximations are often

used. The simplest approximation is to use a first order Taylor’s approximation (see Novshek,

5see Appendix A for formulas for these under skew normal model.
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1993) about the expected predictive summaries, or assume

Upred(ω) = E[upred(ω,X )|xo] ≈ upred(ω, E[X |xo]).

For linear utility functions this approximation is exact. The Taylor’s approximation removes

any parameter uncertainty and leads directly to the certainty equivalence optimization frame-

work. It is easy to see that combining the Taylor’s approximation and the assumption that

the posterior moments approximately equal predictive moments leads to a frequently used

‘two-times removed’ approximation of the expected utility of future returns, or

Upred(ω) = E[upred(ω,X )|xo] ≈ upred(ω, E[X |xo]) ≈ uparam(ω, E[θ|xo]).

Moving away from the Taylor’s assumption requires either specially chosen probability mod-

els and utility functions, which result in analytic functions for expected utility, or require

using numerical methods to estimate the expected utility function.

In an attempt to maintain the flexibility of the efficient frontier optimization framework

but still accommodate parameter uncertainty, Michaud (1998) proposes an optimization ap-

proach that switches the order of integration (averaging) and optimization.6 The maximum

utility framework optimizes the expected utility; the certainty equivalence framework opti-

mizes the utility of expected future returns (e.g. ergodic estimates of predictive moments

based on draws from the predictive density). Michaud (1998) proposes creating a ‘resampled

frontier’ by repeatedly maximizing the utility for a draw from a probability distribution and

then averaging the optimal weights that result from each optimization. While his approach

could be viewed in terms of predictive returns, his sampling guidelines are arbitrary and

could significantly impact the results.7 Given, that his main interest is with regards to

6The resampling technique that Michaud proposes is the same as the one proposed in Jorion (1992).

However, Jorion does not claim that the resampled frontier is efficient. Jorion is able to use the resampling

technique to gain important insight on the value of adding additional assets to a portfolio.
7Repeated estimates of predictive moments are used to mimic parameter uncertainty. Each estimate is

based on a number of draws from a multivariate normal density with an empirical mean and covariance.

The number of draws for each estimate is equal to the number of data points used to form the empirical

moments. Hence the variance of these estimates is arbitrarily determined by the size of the initial data set.
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accounting for parameter uncertainty, we consider a modified algorithm where parameter

draws from a posterior density are used in place of the predictive moment summaries. To be

explicit, assuming a utility of parameters, the essential steps of his algorithm are as follows.

For a family of utility functions (uparam,1, ..., uparam,K), perform the following steps.

1. For each utility function (e.g. uparam,k), generate n draws from a posterior density

θi,k ∼ p(θ|xo).

2. For each θi,k find weight ωi,k that maximizes uparam,k(ω, θi,k).

3. For each utility function, let ω̄k = 1/n
∑

ωi define the optimal portfolio.

By Jensen’s inequality, if ω∗
k 6= ω̄k, then for a large class of utility functions

E[uparam,k(ω
∗
k, θ)|x

o] 6= E[uparam,k(ω̄k, θ)|x
o]. (8)

Further if ω∗
k maximizes E[uparam,k(ω, θ)|xo], then

E[uparam,k(ω
∗
k, θ)|x

o] ≥ E[uparam,k(ω
∗∗, θ)|xo]

for all ω∗∗ 6= ω∗. From (8), clearly

E[uparam,k(ω
∗
k, θ)|x

o] > E[uparam,k(ω̄, θ)|xo],

or ω̄k results in a sub-optimal portfolio in terms of expected utility maximization. Stated in

practical terms, on average, Michaud’s approach ‘leaves money on the table’.

3.1.3 Ignore Skewness

Although evidence of skewness and other higher moments in financial data are abundant,

it is common for skewness to be ignored entirely in practice. Typically skewness is ignored

both in terms of the underlying probability model and the assumed utility functions. In

order to illustrate the impact of ignoring skewness, Figure 4 shows the empirical summary

of the distribution of possible portfolios for four equity securities (Cisco Systems, General

Electric, Sun Microsystems, and Lucent Technologies).
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Insert Figure 4 here

The mean-variance summary immediately leads to Markowitz’s initial insight, but the rela-

tionship between mean, variance and skewness demonstrates that Markowitz’s two-moment

approach offers no guidance for making effective trade offs between mean, variance and

skewness. Using the certainty equivalence framework and a linear utility of the first three

empirical moments, or

uempirical = ω′ me − λ ω′ Ve ω + γ ω′ Se ω ⊗ ω,

where me, Ve, Se are the empirical mean, variance and skewness, Figure 5 contrasts the

optimal portfolios that come from assuming an investor only has an aversion to ‘risk’ (λ =

0.5, γ = 0) and has both an aversion to ‘risk’ and a preference for positive skewness (λ =

0.5, γ = 0.5).

Insert Figure 5 here

When skewness is considered, the optimal portfolio is pushed further up the efficient

frontier signifying that for the same level of risk aversion, an investor can get a higher return

if they include skewness in the decision process. In this case, the positive skewness of the

portfolio effectively reduces the portfolio risk.

3.2 Bayesian optimization methods

Bayesian methods offer a natural framework for both estimating and optimizing an arbitrary

utility function, given an appropriately complex probability model. Given an appropriate

Markov chain Monte Carlo (MCMC) estimation routine, it is straightforward and computa-

tionally trivial to generate draws from the posterior predictive density, or to draw

xi ∼ p(x|xo)

and then calculate draws of the predictive summaries Xi. Given a set of n draws, the expected

utility for an arbitrary utility function can be estimated as an ergodic average, or

U(ω) = E[u(ω,X )|xo] ≈
1

n

∑

u(ω,Xi).
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The approximate expected utility can then be optimized numerically using a number of

different approaches. One attractive algorithm, which is widely used in Bayesian statistics,

is the Metropolis-Hastings (MH) algorithm.

Given reasonable regularity conditions for the target (objective) function, the MH al-

gorithm forms an irreducible Markov chain on the parameter space (which would be the

action space, or space of allowed portfolios) which converges, in distribution, to the target

function, see Gilks et al. (1996) and Meyn and Tweedie (1993) for a discussion of the MH

algorithm.8 Intuitively, this Markov chain can be viewed as a type of ‘random walk’ with a

drift in the direction of larger values of the target function. When the MH algorithm is used

as a tool for performing statistical inference, the target density is typically a posterior prob-

ability density; however, this need not be the case. As long as the target function is strictly

positive and integrable, the MH can be used to numerically explore the extreme values of

the target function. Not only has the MH been shown to be very effective for searching high

dimensional spaces, its irreducible property ensures that if a global maximum exists the MH

algorithm will eventually escape from any local maximum and visit the global maximum.

In order to use the MH function, we need to ensure that our expected utility is strictly

positive and integrable. For the linear utility functions, integrability over the space of possible

portfolios, where the portfolios are restricted to the unit simplex (i.e. we do not allow short

selling), is easily established. We modify the utility function so that it is a strictly positive

function by subtracting the minimum expected utility, or the target function becomes

Ũ(ω) = U(ω) − min
ω

U(ω).

4 Optimal portfolios in practice

In theory, simplifications to the complete asset allocation task will result in a sub-optimal

portfolio selection. In order to assess the impact that results from some of these simplifica-

8Bielza et al. discuss an alternate optimization scheme where they skip the step of estimating the expected

utility and give a one-step procedure, using the MH algorithm, to find optimal actions. We did not pursue

this approach as we were interested both in making inference and determining an optimizing action.
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tions in practice, we consider three different optimization approaches for two data sets using

a family of linear utility functions. In particular, we consider the utility functions given

in (4) and (6), which have expected utilities given in terms of the predictive posterior and

posterior moments respectively, see (5) and (7). We consider a number of potential prob-

ability models and select the best model. Using results from both the multivariate normal

model and the best higher moment model, we numerically determine the optimal portfolio

based on the predictive returns, the parameter values and using Michaud’s (1998) non-utility

maximization approach. We contrast the performance of each optimal portfolio in terms of

expected predictive utility using the best model.

4.1 Data description

We consider two sets of returns. The first set comes from four equity securities. The second

set comes from a broad-based portfolio of domestic and international equities and fixed

income.

First we consider daily returns from April 1996 to March 2002 on four equity securities

consisting of General Electric, Lucent Technologies, Cisco Systems, and Sun Microsystems.

These stocks are from the high tech sector, and are chosen to illustrate portfolio selection

among closely related assets.

We also try to select securities that match the asset allocation choices facing individuals.

To do so we consider the weekly returns from January 1989 to June 2002 on four equity

portfolios: Russell 1000 (large capitalization stocks), Russell 2000 (smaller capitalization

stocks), Morgan Stanley Capital International (MSCI) EAFE (non-U.S. developed markets),

and MSCI EMF (emerging market equities that are available to international investors). We

consider three fixed income portfolios: government bonds, corporate bonds, and mortgage

backed bonds. Each of these fixed income return series are from Lehman Brothers and form

the three major subcomponents of the popular Lehman aggregate index.
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4.2 Model choice and select summary statistics

To determine which skew normal model best fit the respective data sets, we compute Bayes

factors for the multivariate normal model, the skew normal model proposed by Azzalini and

Dalla Valle (1996) with a diagonal ∆ matrix, and the skewed normal model proposed by

Sahu et al. (2002) with both a diagonal and a full ∆ matrix. The results for the high tech

stocks shows that the skewed normal diagonal models with a diagonal ∆ out perform the

other models, with the version of Sahu et al. (2002) doing the best. The skewed normal

model with the full ∆, however, performs better than the others in the case of the benchmark

indices (see Tables 1 and 2). The model with the full ∆ accommodates co-skewness, which

could be viewed as correlated extremes, better than the model with the diagonal ∆. This

suggests that portfolios of highly related stocks may have less co-skewness than portfolios of

highly diversified global summaries.

Insert Tables 1 and 2 here

The posterior parameter estimates for µ, Σ, and ∆, for both the high tech stocks and the

global asset allocation benchmark indices are given in Tables 3 and 4. The estimates for ∆

for the four equity securities suggest that when considered jointly the skewness is significant,

and all but Lucent exhibit positive skewness. For the global asset allocation benchmark

indices, there are many positive and negative elements of ∆ though the largest δ’s tend to

be negative.

Insert Tables 3 and 4 here

To illustrate the improvement that comes from using the best skewed normal model com-

pared to a multivariate normal model, consider the bivariate summary of the actual returns,

the predictive joint density (skewed normal) and the predictive joint density (normal) for

Cisco Systems and General Electric, see Figure 6. The skewed normal density accommodates

all of the features of the actual data including correlation, skewness, co- skewness and kur-

tosis (heavy tails); while the normal density only captures the correlation and significantly

understates the tails of the distribution.
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Insert Figure 6 here

4.3 Expected utility for competing methods

Optimal weights are calculated for both data sets using the expected predicted utility, the

expected parameter utility, and Michaud’s (1998) method. Each method assumes a normal

(two moment) probability model and the best skewed normal (higher moment) probability

model. For the two moment model we consider two linear utility functions - see (5) and (7)

- one with no risk aversion (λ = 0) and no preference for skewness (γ = 0); another with a

risk aversion of (λ = 0.5) and no preference for skewness (Tables 5 and 6). For the higher

moment model, we considered linear utilities with no risk aversion and skewness preference

(λ = 0, γ = 0), with risk aversion and no skewness preference (λ = 0.5, γ = 0), with no

risk aversion and skewness preference (λ = 0, γ = 0.5) and with both risk aversion and

skewness preference (λ = 0.5, γ = 0.5) (Tables 7 and 8). The weights that resulted from

each optimization were then used to calculate the expected predictive utility.

Insert Tables 5, 6 and 7, 8 here

Our first observation is that Michaud’s (1998) optimization approach uniformly selects

a sub-optimal portfolio even when there is no risk aversion or skewness preference. For

example, in the global asset allocation benchmarks indices, the certainty equivalent loss is

(0.001227− 0.001132)× 52 = 0.00494, or roughly 50 basis points per year. The implicit goal

of no risk aversion or skewness preference is to select the securities with the best average

return; for the high tech data set this is Sun Microsystems and for the benchmark indices this

is the Russell 1000 index. For the expected utility approaches, essentially all of the weight

is placed on these securities. In Michaud’s approach only 58% of the weight is place on Sun

Microsystems with the rest spread across the remaining stocks, see λ = 0 and γ = 0 from

Table 9. It could be argued that the weights from Michaud’s approach should be preferred

as they offer diversification and give some sort of protection against volatility. While this

may be true, the stated utility function for this optimization ignores volatility (because

λ = 0). Clearly if the investor has an aversion to risk, then the appropriate portfolio would

18



be based on a utility function that explicitly accounts for this aversion. When evaluated in an

maximum expected utility framework, Michaud’s approach distorts the investor’s preference

by over diversifying.

Insert Table 9 here

Not surprisingly, when there is only preference for skewness, the predictive optimization

approach out performs the parameter approach, e.g. λ = 0, γ = 0.5 in Table 6. This

difference illustrates the fact that the predictive variance and skewness are only approximated

by the estimates of the variance and skewness based on posterior parameter values, see

Section 3.1. In the case of the high tech stocks, with λ = 0 and γ = 0.5, the parameter

optimization approach places almost all of the portfolio weight on Sun Microsystems, but in

light of predictive skewness the predictive approach distributes almost all of the weight on

the three other stocks, see Table 9.

Ignoring the weights from Michaud’s approach, the biggest differences in expected pre-

dicted utilities comes from comparing optimizations using the normal model versus the

skewed normal model, see λ = 0.5 and γ = 0.5 in Tables 5 and 6. For the benchmark

indices, the optimal allocation changes markedly when skewness is estimated and included

in the utility, see Tables 10. The most noticeable change is that less weight is placed on the

mortgage-backed securities and EMF and more weight is placed on the remaining securities,

especially the US bonds and EAFE.

Insert Table 10 here

5 Conclusion

Considering both higher moments and parameter uncertainty is important in portfolio se-

lection. Up to now these issues have been treated separately. We compare results with

Michaud’s application of the resampling technique. We show that the multivariate normal

distribution is an unrealistic probability model for portfolio returns primarily because it does

not allow for higher moments, in particular skewness and coskewness. We also demonstrate
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that the skew normal model of Sahu et al. (2002) is a realistic model for portfolio returns.

It is flexible enough to allow for skewness and coskewness, and at the same time, accom-

modates heavy tails. Additional features of the model include straightforward specification

of conjugate prior distributions which allows for efficient simulation and posterior inference.

Bayesian methods are also used to incorporate parameter uncertainty into the predictive

distribution of returns, as well as to maximize the expected utility.

We show that predictive utility can be written in terms of posterior parameter based

utility plus additional terms. These additional terms can be very influential in an investor’s

utility. We compare results with Michaud’s (1998) ‘resampling’ technique for portfolio selec-

tion. We show not only that because of Jensen’s inequality his averaging of weights produces

sub-optimal portfolios, but also that his approach is outside the efficient utility maximization

framework.

Using the framework we describe, we intend to investigate revealed market preferences

and determine whether the ‘market’ empirically exhibits preference for skewness. As a first

step we will use the observed market weights for a benchmark equity index and use the

predictive utility function (4) to determine the implied market λ and γ. In addition, we

intended to consider modifications to (4) that allow for asymmetric preferences over positive

and negative skewness.
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Appendix A: Skew normal probability model

0.1 Density and moment generating function

When ∆ is a full matrix, the likelihood function and moment generating function given in

Sahu et al. changes. Their equation (9) becomes

f(y|µ, Σ, ∆) = 2m|Σ + ∆∆′|−
1

2 φm

[

(Σ + ∆∆′)−
1

2 (y − µ)
]

×

Φm

[

(I − ∆′(Σ + ∆∆′)−1∆)−
1

2 ∆′(Σ + ∆∆′)−1(y − µ)
]

. (A-1)

Where φm is the m−dimensional multivariate normal density function with mean zero and

identity covariance, and Φm is multivariate normal cumulative distribution also with mean

zero and identity covariance.

The moment generating function becomes

MY(t) = 2met′µ+t′(Σ+∆∆′)t/2Φm(∆t) (A-2)

The first three moments of the distribution (m, V , and S) can be written in terms of µ, Σ

and ∆ as follows,

m = µ + (2/π)1/2∆1, V = Σ + (1 − 2/π)∆∆′, and

S = ∆EZ∆′ ⊗ ∆′ + 3µ′ ⊗ {∆∆′(1 − 2/π) + 2/π∆1(∆1)′}+

3{(2/π)1/2(∆1)′ ⊗ [Σ + µµ′]} + 3µ′ ⊗ Σ

+ µµ′ ⊗ µ′ − 3m′ ⊗ V − m m′ ⊗ m′, (A-3)

where 1 is a column vector of ones, and EZ is the m × m2 super matrix made up of the

moments of a truncated standard normal distribution.

EZ =











E[Z1Z1Z1] . . . E[Z1Z1Zm] . . . E[ZmZ1Z1] . . . E[ZmZ1Zm]
...

. . .
... . . .

...
. . .

...

E[Z1ZmZ1] . . . E[Z1Z1Zm] . . . E[ZmZmZ1] . . . E[ZmZmZm]
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Where E[Zi] =
√

2/π, E[Z2
i ] = 1, and E[Z3

i ] =
√

8/π. Since the Zi’s are independent,

E[Z2
i Zj] = E[Z2

i ]E[Zj] =
√

2/π, and E[ZiZjZk] = E[Zi]E[Zj]E[Zk] = (2/π)3/2 for any i, j,

and k.

0.2 First three moments of linear combination

Assume X ∼ SN(µ, Σ, ∆) and a set of constants ω = (ω1, . . . , ωm)′, the first three moments

of ω′ X are as follows

E(ω′ X) = ω′ m

V ar(ω′ X) = ω′ V ω

Skew(ω′ X) = ω′ S ω ⊗ ω,

where m, V and S are given above.

0.3 Model Specification

0.3.1 Likelihood and priors

The skew normal density is defined in terms of a latent (unobserved) random variable z,

which comes from a truncated standard normal density. The likelihood is given by

Xi|Zi, µ, Σ, ∆ ∼ Nm(µ + ∆Zi, Σ),

where Nm is a multivariate normal density,

Zi ∼ Nm(0, Im)I{Zij > 0}, for all j,

and Im is an m dimensional identity matrix. In all cases we used conjugate prior densities,

with hyper-parameters that reflect vague prior information, or a priori we assume
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β ∼ Nm(m+1)(0, 100Im(m+1))

Σ ∼ Inverse-Wishart(m, mIm),

where β ′ = (µ′, vec(∆)′) and vec(·) forms a vector by stacking the columns of a matrix.

0.3.2 Full conditionals

Assuming n independent skew normal observations, the full conditional distributions are as

follows:

Zi|x, µ, Σ, ∆ ∼ Nm(A−1ai, A
−1)I{Zij > 0}, for all j,

β|x, Σ, Z ∼ Nm(m+1)(B
−1b, B−1)

Σ|x, µ, ∆, Z ∼ Inverse-Wishart(m + n, C),

where

A = Im + n∆′Σ−1∆ and a =

n
∑

i=1

∆′Σ−1(xi − µ),

B =

n
∑

i=1

yiΣ
−1xi +

1

100
Im(m+1) and b =

n
∑

i=1

yiΣ
−1(xi),

C =

n
∑

i=1

(xi − (µ − ∆Zi))(xi − (µ − ∆Zi))
′ + mIm,

where yi = (Im, Z ′
i ⊗ Im).

0.3.3 Lévy stable skew normal

When there is a Zi for each observation xi, the moment generating function readily shows

that the skew normal distributions of Sahu et al. (2002) and Azzalini et al. (1996) are not

Lévy stable. If, however, the latent variables Z are restricted to be time invariant, i.e a single

Z for all of the observations, then both models are Lévy stable. In addition, the Azzalini et
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al. (1996) model maintains the property that the distribution of the portfolio is also skew

normal.

0.4 Estimation using the slice sampler

The slice sampler introduces an auxiliary variable, which we will call u, in such a way that

the draws from both the desired variable and the auxiliary variable can be obtained by

drawing from appropriate uniform densities, for more details see Damian et al. (1999). To

illustrate, assume that we want to sample from the following density,

f (x) ∝ exp

{

−
1

2σ2
(x − µ)2

}

I {x ≥ 0} , (A-4)

where I{·} is an indicator function. We proceed by introducing an auxiliary variable u and

form the following joint density,

f (x, u) ∝ I

{

u ≤ exp

{

−
1

2σ2
(x − µ)2

}

I {x ≥ 0}

}

. (A-5)

It is easy to see that based on (A − 5), the marginal density of x is given by (A − 4) and

that the conditional density of u given x is a uniform density, or

f (u|x) ∝ I

{

u ≤ exp

{

−
1

2σ2
(x − µ)2

}}

.

With a little more work, it is straightforward to see that the conditional density of x given

u is also uniform, or

f (x|u) ∝ I
{

max
(

0, µ −
√

−2σ2log(u)
)

≤ x ≤ µ +
√

−2σ2log(u)
}

.

Samples from x can then be easily obtained by iteratively sampling from u conditional on x

and then from x conditional on u.
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Table 1:
Evaluating the Distributional Representation of Four Equity Securities

Model choice results for analysis of the daily stock returns of General Electric, Lucent
Technologies, Cisco Systems, and Sun Microsystems from April 1996 to March 2002. The
four models that are used are the multivariate normal (MV-Normal), the multivariate
skew-normal of Azzalini and Dalla Valle (1996) with a diagonal ∆ matrix (MVS-Normal
D-∆), and the multivariate skew-normal of Sahu et al. (2002) with both a diagonal and
full ∆ matrix (MVS-Normal F-∆). Maximum log likelihood values are used to compute
Bayes factors between the multivariate normal model and all of the other models and is
reported on the log scale. The model with the highest Bayes factor best fits the data. The
two models with diagonal ∆ provide the best fit suggesting that there is little co-skewness.
Sahu et al. (2002) diagonal ∆ model fits best overall.

Model Log(BF) Max Log Likelihood
MV-Normal 0.00 -2833.82
MVS-Normal D-∆, Azzalini (1996) 2225.75 -2561.15
MVS-Normal D-∆, Sahu et al. (2002) 2368.33 -2418.85
MVS-Normal F-∆, Sahu et al. (2002) 2192.83 -2595.56
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Table 2:
Evaluating the distributional representation of global asset allocation bench-

marks

Model choice results for weekly benchmark indices from January 1989 to June 2002 (Lehman
Brothers government bonds, LB corporate bonds, and LB mortgage bonds, MSCI EAFE
(non-U.S. developed market equity), MSCI EMF (emerging market free investments), Rus-
sell 1000 (large cap), and Russell 2000 (small cap)). The four models that are used are the
multivariate normal (MV-Normal), the multivariate skew-normal of Azzalini and Dalla Valle
(1996) with a diagonal ∆ matrix (MVS-Normal D-∆), and the multivariate skew-normal of
Sahu et al. (2002) with both a diagonal and full ∆ matrix (MVS-Normal F-∆). Maximum
log likelihood values are used to compute Bayes factors between the multivariate normal
model and all of the other models and is reported on the log scale. The model with the
highest Bayes factor best fits the data. The Sahu et al. (2002) full ∆ model fits the data best.

Model Log(BF) Max Log Likelihood
MV-Normal 0.00 -2319.00
MVS-Normal D-∆, Azzalini (1996) 1946.11 -2096.26
MVS-Normal D-∆, Sahu et al. (2002) 2015.11 -2067.73
MVS-Normal F-∆, Sahu et al. (2002) 2034.22 -2200.30
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Table 3:
Parameter estimates for diagonal ∆ skew normal on four securities

Parameter estimates for the diagonal ∆ model of Sahu et al. (2002) used to fit the daily
stock returns of General Electric, Lucent Technologies, Cisco Systems, and Sun Microsystems
from April 1996 to March 2002. These estimates are the result of a Bayesian Markov Chain
Monte Carlo iterative sampling routine. These parameters combine to give the mean (µ +
(2/π)1/2∆1), variance (Σ + (1 − 2/π)∆∆′), and skewness (see Appendix for formula).

µ GE Lucent Cisco Sun
-0.203 1.088 -0.839 -1.214

Σ GE Lucent Cisco Sun
GE 4.13 1.478 2.331 2.304
Lucent 1.478 15.02 5.095 4.504
Cisco 2.331 5.095 13.868 10.711
Sun 2.304 4.504 10.711 17.485

∆ GE Lucent Cisco Sun
GE 0.331 0 0 0
Lucent 0 -1.192 0 0
Cisco 0 0 1.069 0
Sun 0 0 0 1.544
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Table 4:
Parameter estimates for full ∆ skew normal on global asset allocation benchmark

Parameter estimates for full ∆ model of Sahu et al. (2002) used to fit the weekly bench-
mark indices Lehman Brothers government bonds, LB corporate bonds, and LB mortgage
bonds, MSCI EAFE (non-U.S. developed market equity), MSCI EMF (emerging market free
investments), Russell 1000 (large cap), and Russell 2000 (small cap) from January 1989 to
June 2002. These estimates are the result of a Bayesian Markov Chain Monte Carlo iterative
sampling routine. These parameters combine to give the mean (µ + (2/π)1/2∆1), variance
(Σ + (1 − 2/π)∆∆′), and skewness (see Appendix for formula).

µ GB CB MBS EAFE EMF R1000 R2000
0.162 0.385 0.541 0.459 0.095 0.499 0.889

Σ GB CB MBS EAFE EMF R1000 R2000
GB 2.897 3.077 2.156 -0.012 -0.249 0.277 0.01
CB 3.077 3.734 2.405 0.25 0.076 0.549 0.383
MBS 2.156 2.404 2.163 0.269 0.021 0.459 0.403
EAFE -0.012 0.25 0.269 5.16 2.89 2.574 2.694
EMF -0.249 0.077 0.021 2.89 6.687 2.382 2.85
R1000 0.277 0.549 0.459 2.574 2.382 4.717 4.359
R2000 0.01 0.383 0.403 2.694 2.85 4.359 6.293

∆ GB CB MBS EAFE EMF R1000 R2000
GB -0.049 0.227 -0.546 -0.119 -0.1 0.424 -0.1
CB 0.049 0.194 -0.583 -0.167 -0.119 0.484 -0.168
MBS -0.138 0.161 -0.607 -0.135 -0.091 0.347 -0.045
EAFE 0.33 -0.238 -0.002 -0.11 -0.286 0.168 -0.34
EMF 0.041 0.336 0.111 0.142 -1.037 0.144 0.186
R1000 0.141 -0.015 0.108 0.122 -0.083 -0.451 -0.125
R2000 0.072 -0.083 -0.047 0.097 -0.021 -0.2790 -0.567
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Table 5:
Two moment optimization for four equity securities

This table contains predictive utilities for the weights that maximize utility as a linear
function of the two moments of the multivariate normal model by three different methods
for daily stock returns of General Electric, Lucent Technologies, Cisco Systems, and Sun
Microsystems from April 1996 to March 2002. The first method is based on predictive
or future values of the portfolio (results in ω2,pred where the 2 represents the number of
moments in the model), the second is based on the posterior parameter estimates (ω2,param),
and the third is the method proposed by Michaud (ω2,Michaud). The weights that are
found by each method are ranked by the three moment predictive utility they produce
(i.e E[u3,pred(ω)] = ω′ mp − λ ω′ Vp ω + γ ω′ Sp ω ⊗ ω, where the 3 signifies that the utility
function is linear in the first three moments of the skew normal model, and mp, Vp, and Sp

are the predictive mean, variance and skewness) for varying values of λ and γ. The highest
utility obtained signifies the method that is best for portfolio selection according to the
investor’s preferences. For each combination of λ and γ, ω2,pred gives the highest expected
utility.

λ γ E[u3,pred(ω2,pred)] E[u3,pred(ω2,param)] E[u3,pred(ω2,Michaud)]
0 0 0.122769 0.122747 0.113216
0 0.5 0.0978264 0.0974689 0.0104864

0.5 0 -1.74474 -1.75791 -1.75648
0.5 0.5 -1.73273 -1.74919 -1.74986
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Table 6:
Three moment optimization for four equity securities

Predictive utilities for the weights that maximize utility as a linear function of the three
moments of the multivariate skew normal model by three different methods for daily stock
returns of General Electric, Lucent Technologies, Cisco Systems, and Sun Microsystems from
April 1996 to March 2002. The first method is based on predictive or future values of the
portfolio (results in ω3,pred where the 3 represents the number of moments in the model),
the second is based on the posterior parameter estimates (ω3,param), and the third is the
method proposed by Michaud (ω3,Michaud). The weights that are found by each method are
ranked by the three moment predictive utility they produce (i.e E[u3,pred(ω)] = ω′ mp −
λ ω′ Vp ω + γ ω′ Sp ω ⊗ ω, where the 3 signifies that the utility function is linear in the first
three moments of the skew normal model, and mp, Vp, and Sp are the predictive mean,
variance and skewness) for varying values of λ and γ. The highest utility obtained signifies
the method that is best for portfolio selection according to the investor’s preferences. For
each combination of λ and γ, ω3,pred gives the highest expected utility.

λ γ E[u3,pred(ω3,pred)] E[u3,pred(ω3,param)] E[u3,pred(ω3,Michaud)]
0 0 0.122735 0.122533 0.111573
0 0.5 0.109008 0.0976164 0.0747268

0.5 0 -1.74451 -1.74472 -1.80207
0.5 0.5 -1.73137 -1.73231 -1.73574
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Table 7:
Two moment optimization for global asset allocation benchmark indices

Predictive utilities for the weights that maximize utility as a linear function of the two mo-
ments of the multivariate normal model by three different methods for weekly benchmark
indices Lehman Brothers government bonds, LB corporate bonds, and LB mortgage bonds,
MSCI EAFE (non-U.S. developed market equity), MSCI EMF (emerging market free invest-
ments), Russell 1000 (large cap), and Russell 2000 (small cap) from January 1989 to June
2002. The first method is based on predictive or future values of the portfolio (results in
ω2,pred where the 2 represents the number of moments in the model), the second is based
on the posterior parameter estimates (ω2,param), and the third is the method proposed by
Michaud (ω2,Michaud). The weights that are found by each method are ranked by the three
moment predictive utility they produce (i.e E[u3,pred(ω)] = ω′ mp −λ ω′ Vp ω +γ ω′ Sp ω ⊗ ω,
where the 3 signifies that the utility function is linear in the first three moments of the skew
normal, and mp, Vp, and Sp are the predictive mean, variance and skewness) for varying
values of λ and γ. The highest utility obtained signifies the method that is best for portfolio
selection according to the investor’s preferences. For each combination of λ and γ, ω3,pred

gives the highest expected utility.

λ γ E[u3,pred(ω2,pred)] E[u3,pred(ω2,param)] E[u3,pred(ω2,Michaud)]
0 0 0.254183 0.250803 0.2384
0 0.5 0.223508 0.22125 0.211609

0.5 0 -0.647172 -0.662493 -0.673768
0.5 0.5 -0.649377 -0.666131 -0.675885
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Table 8:
Three moment optimization for global asset allocation benchmark indices

Predictive utilities for the weights that maximize utility as a linear function of the three mo-
ments of the multivariate skew normal model by three different methods for weekly bench-
mark indices Lehman Brothers government bonds, LB corporate bonds, and LB mortgage
bonds, MSCI EAFE (non-U.S. developed market equity), MSCI EMF (emerging market free
investments), Russell 1000 (large cap), and Russell 2000 (small cap) from January 1989 to
June 2002. The first method is based on predictive or future values of the portfolio (results
in ω3,pred where the 3 represents the number of moments in the model), the second is based
on the posterior parameter estimates (ω3,param), and the third is the method proposed by
Michaud (ω3,Michaud). The weights that are found by each method are ranked by the three
moment predictive utility they produce (i.e E[u3,pred(ω)] = ω′ mp −λ ω′ Vp ω +γ ω′ Sp ω ⊗ ω,
where the 3 signifies that the utility function is linear in the first three moments of the skew
normal, and mp, Vp, and Sp are the predictive mean, variance and skewness) for varying
values of λ and γ. The highest utility obtained signifies the method that is best for portfolio
selection according to the investor’s preferences. For all combinations of λ and γ except one
(λ = 0, γ = 0.5), ω2,pred gives the highest expected utility.

λ γ E[u3,pred(ω3,pred)] E[u3,pred(ω3,param)] E[u3,pred(ω3,Michaud)]
0 0 0.253829 0.251662 0.239639
0 0.5 0.222629 0.223304 0.210897

0.5 0 -0.646989 -0.647157 -0.650585
0.5 0.5 -0.648895 -0.64923 -0.656476
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Table 9:
Portfolio weights: four equity securities

Three moment (skew normal) utility based portfolio weights for daily stock returns of General
Electric, Lucent Technologies, Cisco Systems, and Sun Microsystems from April 1996 to
March 2002. The weights maximize the expected utility function E[u3,pred(ω)] = ω′ mp −
λ ω′ Vp ω + γ ω′ Sp ω ⊗ ω, (where the 3 signifies that the utility function is linear in the first
three moments, and mp, Vp, and Sp are the predictive mean, variance and skewness) for
varying values of λ and γ. Three different methods of maximization are used. The first is
based on predictive or future values of the portfolio (results in ω3,pred where the 3 represents
the number of moments in the model), the second is based on the posterior parameter
estimates (ω3,param), and the third is the method proposed by Michaud (ω3,Michaud).

λ = 0, γ = 0 GE Lucent Cisco Sun
ω3,pred 8.8e-4 1.21e-4 4.48e-4 0.9985
ω3,param 1.71e-3 6.35e-4 0.0112 0.986
ω3,Michaud 0.11 0.0764 0.225 0.588

λ = 0, γ = 0.5 GE Lucent Cisco Sun
ω3,pred 0.405 0.409 0.186 2.15e-5
ω3,param 3.52e-4 1.0e-4 6.03e-4 0.9989
ω3,Michaud 0.0285 0.00297 0.0453 0.923

λ = 0.5, γ = 0 GE Lucent Cisco Sun
ω3,pred 0.784 0.125 0.0535 0.0368
ω3,param 0.785 0.129 0.0557 0.0304
ω3,Michaud 0.677 0.15 0.0901 0.0807

λ = 0.5, γ = 0.5 GE Lucent Cisco Sun
ω3,pred 0.785 0.129 0.0646 0.0214
ω3,param 0.787 0.125 0.0532 0.0356
ω3,Michaud 0.773 0.155 0.0565 0.0165
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Table 10:
Portfolio weights: global asset allocation benchmark indices

Two moment (normal) utility based portfolio weights for weekly benchmark indices Lehman
Brothers government bonds, LB corporate bonds, and LB mortgage bonds, MSCI EAFE
(non-U.S. developed market equity), MSCI EMF (emerging market free investments), Russell
1000 (large cap), and Russell 2000 (small cap), from January 1989 to June 2002. The weights
maximize the expected utility function E[u2,pred(ω)] = ω′ mp−λ ω′ Vp ω, (where the 2 signifies
that the utility function is linear in the two moments of the normal model, and mp and Vp

are the predictive mean and variance) for varying values of λ and γ. Three different methods
of maximization are used. The first is based on predictive or future values of the portfolio
(results in ω2,pred where the 2 represents the number of moments in the model), the second is
based on the posterior parameter estimates (ω2,param), and the third is the method proposed
by Michaud (ω2,Michaud).

λ = 0.5 GB CB MBS EAFE EMF R1000 R2000
ω2,pred 0.12 2.4e-5 0.497 0.1 0.0984 0.183 6.34e-4
ω2,param 1.48e-3 2.32e-3 0.632 0.1 0.0777 0.111 0.075
ω2,Michaud 0.157 9.72e-3 0.461 0.116 0.0421 0.0812 0.134

λ = 0.5, γ = 0.5 GB CB MBS EAFE EMF R1000 R2000
ω3,pred 0.157 2.34e-4 0.439 0.121 0.0874 0.193 2.77e-3
ω3,param 0.149 2.11e-4 0.461 0.0967 0.0905 0.18 0.0233
ω3,Michaud 0.225 5.2e-4 0.407 0.0885 0.0808 0.15 0.0479
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Density Estimate for Cisco
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Figure 1: This figure contains univariate estimates for Cisco Systems and General Electric
daily stock returns from April 1996 to March 2002. The solid lines represents the kernel den-
sity estimate, while the dotted lines are the normal density with sample mean and variance.
In one dimension the normal distribution closely matches the returns for these two stocks.
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Figure 2: This figure contains bivariate estimates for Cisco Systems and General Electric
daily stock returns from April 1996 to March 2002. The plot on the left is a contour plot of
the actual data. The plot on the right is a bivariate normal with sample mean and covariance.
In two dimensions the bivariate normal distribution is a poor model to use for these joint
returns. The actual returns (left) exhibit co-skewness and much fatter tails than the normal
approximation.
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Figure 3: This figure contains plots of the mean, variance and skewness of portfolios con-
sisting of two assets. Daily returns from April 1996 to March 2002 for General Electric and
Lucent Technologies, Sun Microsystems and Cisco Systems, and General Electric and Cisco
Systems are considered. The top row has the mean of the portfolio (equal to the linear
combination of the asset means) as the weight of the first asset varies from 0 to 1. The
solid line in the plots in the second row represents the linear combination of the variances
of the assets, while the dotted line represents the variance of portfolios (variance of linear
combination). The variance of the portfolio is alway less or equal to the variance of the
linear combination. The solid line in the third row of plots is the linear combination of
the skewness of the two assets in the portfolio, and the dotted line is the skewness of the
portfolio. The skewness of the portfolio does not dominate, nor is dominated by the linear
combination of the skewness. Picking a portfolio based solely on minimum variance could
lead to a portfolio with minimum skewness as well (see GE vs. Cisco).
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Figure 4: This figure shows the space of possible portfolios based on historical parameter
estimates from the daily returns of General Electric, Lucent Technologies, Cisco Systems,
and Sun Microsystems from April 1996 to March 2002. The top left plot is the mean-
standard deviation space, the top right plot is the mean verses the cubed-root of skewness.
The bottom left plot is the standard deviation verses the cubed-root of skewness, and the
bottom right plot is a three dimensional plot of the mean, standard deviation and cubed-
root of skewness. In all plots that contain the skewness there is a sparse region where the
skewness is zero.
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Figure 5: This figure shows the mean-variance space of possible portfolios based on his-
torical parameter estimates from the daily returns of General Electric, Lucent Technolo-
gies, Cisco Systems, and Sun Microsystems from April 1996 to March 2002. The port-
folios are shaded according to the utility associated with each. In the left plot the util-
ity function is E[upred(ω)] = ω′ mp − 0.5 ω′ Vp ω, which is a linear function of the first
two moments. The maximum utility is obtained by a portfolio on the frontier and is
marked by a ‘+’. The plot on the right is shaded according the the utility function
E[upred(ω)] = ω′ mp − 0.5 ω′ Vp ω + 0.5 ω′ Sp ω ⊗ ω, which is a linear function of the first
three moments. The maximum utility is obtained by a portfolio on the frontier and is
marked by a ‘+’.
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Figure 6: This figure contains bivariate estimates for Cisco Systems and General Electric
daily stock returns from April 1996 to March 2002. The plot on the top left is a contour plot
of the actual data. On the top right is a contour plot of predictive bivariate returns based
on the skew normal model of Sahu et al. (2002) with a diagonal ∆. The plot on the bottom
is a contour plot of predictive bivariate returns based on the normal distribution. The skew
normal matches both skewness and kurtosis much better than the normal.
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