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The instability of risk is one of 
the most daunting challenges in 
forming optimal portfolios. Inves-
tors typically attempt to improve 

risk estimates by compressing them toward 
a cross-sectional average or some other prior 
belief. We propose a different approach. We 
introduce a protocol for quantifying the 
degree of estimation error in covariances, 
and we show that it varies across assets. We 
argue that rather than compressing estimates 
of covariance toward each other, investors 
should incorporate their relative stability 
directly into the process of forming port-
folios—which will likely render these esti-
mates less similar to each other, though not 
necessarily.

We proceed by describing the sources of 
instability in estimating covariances. We then 
explain how to generate a multivariate return 
distribution that ref lects the relative stability of 
covariances. Next, we describe how to derive 
optimal portfolios from a stability-adjusted 
return distribution. Finally, we show how 
these stability-adjusted portfolios differ from 
portfolios that are blind to estimation error, as 
well as those that rely on Bayesian shrinkage.

SOURCES OF ESTIMATION ERROR

Investors often rely on multidecade sam-
ples of historical data to forecast  covariances 
over shorter future periods, such as a few 

years. These forecasts are subject to three 
sources of estimation error.1 First, small-
sample error arises when covariances of a 
long sample are used to forecast covariances 
of a specific smaller sample. Even though the 
true covariances of a long sample are known, 
the realization of those covariances in shorter 
subsamples may be meaningfully different. 
Second, independent-sample error arises 
when known covariances from one sample 
are projected onto a separate, independent 
sample. Third, interval error arises when 
covariances of high-frequency returns, such 
as monthly returns, differ from covariances 
of longer-period returns, such as f ive-year 
returns.2 Exhibit 1 illustrates these three 
sources of error.

CONSTRUCTING A STABILITY-
ADJUSTED RETURN DISTRIBUTION

We now describe how to construct a 
return distribution that accounts for a com-
posite measure of estimation error comprising 
small-sample error, independent-sample 
error, and interval error.

1. First, we select a large sample of returns
for the assets under consideration.

2. We then select a subsample from this
large sample and compute its covariance
matrix based on returns of the same
interval as our investment horizon.3
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3. We then subtract the subsample covariances from 
the covariances estimated from the remaining 
observations of the large sample. These differ-
ences represent a composite error comprising 
small-sample error, independent-sample error, and 
interval error.

4. Next, we select a new subsample that partly over-
laps with the first subsample, and we again compute 
the differences between the subsample covariances 
and the covariances estimated from the remaining 
observations of the large sample.4

5. We continue in this fashion until we have com-
puted errors in covariances from all overlapping 
subsamples.5

6. Next, for all subsamples, we add the errors to the 
covariances of a base-case sample, which, for example, 
could be the median subsample.6,7 Then, assuming 
normality, we generate simulated return samples 
from each error-adjusted covariance matrix.

7. Finally, we combine these return samples into a 
new large sample, which can be thought of as a 
stability-adjusted return sample.

We should note several features 
of this process. First, the composite 
errors incorporate all three sources of 
error. They ref lect small-sample error, 
because the subsamples are smaller than 
the original sample. They ref lect inde-
pendent-sample error, because each sub-
sample is distinct from the remaining 
observations in the large sample. And 
they also capture interval error, because 
the subsample covariances are estimated 
from longer-interval returns than those 
used to estimate the large-sample 
covariances.

We should also note that the 
resultant return distribution will not be 
normal—despite the distributions of the 
subsamples as well as the Central Limit 
Theorem. We should expect the stabil-
ity-adjusted return distribution to have 
fatter tails than a normal distribution. 
The Central Limit Theorem states that 
the sum of independent random vari-
ables, which themselves do not need to 
be individually normally distributed, 

will approach normality as the quantity of random 
variables increases.8 But we are not summing random 
variables. We are combining distributions.

For example, suppose a particular asset’s daily 
returns for a given month are approximately normally 
distributed around a mean of 0.5%. And suppose their 
returns in the following month are again approxi-
mately normal, but this time around a mean of −0.5%. 
If we sum these daily returns for the f irst day of the 
two months, the second day of the two months, etc., 
the 20 summed observations will also be normally 
distributed, but around a mean of 0.0%. However, 
the 40 daily returns for the two-month period will 
not be normally distributed. They will have a bimodal 
distribution with some observations clustering around 
a peak of 0.5% and others clustering around a peak of 
−0.5%.

Finally, we should note that in contrast to Bayesian 
approaches that compress covariances toward the same 
prior belief, thereby discounting estimation error, we 
embrace estimation error and use it to inform a portfo-
lio’s composition.

E X H I B I T  1
Sources of Estimation Error
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CONSTRUCTING PORTFOLIOS FROM 
STABILITY-ADJUSTED RETURN SAMPLES

As we have just shown, the process of combining 
many return distributions, which themselves may or may 
not be normal, will result in a composite distribution 
that is not normal—nor is it likely to be elliptical. This 
poses a challenge for portfolio construction. Mean–
variance optimization assumes that either 1) returns are 
elliptically distributed (of which the normal distribu-
tion is a special case) or 2) investors have preferences 
that can be well approximated by mean and variance. 
Although most power utility functions, such as the log-
wealth utility function, can be reasonably approximated 
by mean and variance, utility functions that have kinks 
or inf lection points cannot. We therefore employ a tech-
nique called full-scale optimization9 to form portfolios.

We proceed as follows:

1. We select a particular utility function, which need 
not be amenable to approximation by mean and 
variance.

2. We choose a particular asset mix and apply it every 
period to the asset returns in the stability-adjusted 
return sample to compute the utility associated 
with that asset mix for every period.

3. We then sum utility across all periods and record 
this value.

4. We then choose a different asset mix and again 
apply it to the returns to compute its total utility 
across all periods.

5. We continue in this fashion until we arrive at the 
portfolio composition that yields the highest utility 
across all periods.

This full-scale approach to optimization may be 
computationally expensive;10 nonetheless, it accounts 
for every feature of the data, even beyond kurtosis and 
skewness. It is thus suitable for non-elliptical distribu-
tions and for utility functions that cannot be described 
by mean and variance.

RESULTS

We next test stability-adjusted optimization in two 
different settings: asset allocation and index replication. 
We use two utility functions in our full-scale optimi-
zations: 1) a power utility function with a curvature 

E X H I B I T  2
Power and Kinked Utility Functions
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 parameter θ equal to 5 and 2) a kinked utility function 
with a curvature parameter above the kink θ equal to 5, 
a kink threshold k equal to −5.0% for asset allocation and 
0.0% for index replication, and a linear slope ω beneath 
the kink equal to 5. A kinked utility function is suitable 
for investors who face thresholds, such as funding require-
ments or performance hurdles. It is important to note 
that even if all assets’ expected returns are equal and our 
objective is to minimize portfolio risk, expected returns 
are still relevant given a kinked utility function because 
they affect the likelihood of breaching the threshold. 
These utility functions are shown in Exhibit 2.

Stability-Adjusted Asset Allocation

For our asset allocation example, we search for 
the optimal portfolio composed of four asset classes: 

U.S. stocks, U.S. Treasuries, U.S. corporate bonds, and 
commodities. We assume that the expected returns of 
these asset classes, shown in Exhibit 3, are known. We 
set our small-sample window to equal 60 months, and 
we assume an investment horizon of one year. Hence our 
interval error will equal the difference between monthly 
covariances and one-year covariances. We generate a 
sample of 1,000 returns for each error-adjusted small-
sample covariance matrix.

Exhibit 3 also reports the relative stability of the 
standard deviations and correlations, which make up 
the covariances. The stability measures are presented 
as inter-quartile ranges, ref lecting small-sample error, 
independent-sample error, and interval error. We stan-
dardize the inter-quartile ranges for standard deviations 
by dividing them by the standard deviation of the asset 
class returns. Exhibit 3 reveals that the stability of these 

E X H I B I T  3
Asset Class Assumptions and Inter-Quartile Range of Volatility and Correlation

E X H I B I T  4
Portfolio Weights and Performance
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E X H I B I T  5
Realized Volatility for Historical Five-Year Periods

E X H I B I T  6
Replicating Stocks
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risk measures varies across asset classes and significantly 
among correlations.

Exhibit 4 highlights the differences in optimal 
portfolio weights and performance given both a power 
utility function and a kinked utility function, depending 
on whether we ignore errors, shrink them, or account 
for their relative stabilities.11 The Bayesian shrinkage 
approach blends each standard deviation and correla-
tion equally with their cross-sectional averages. To com-
pare these three methods of portfolio construction, we 
require the optimizations that are blind to errors and 
Bayesian shrinkage to have the same expected return 
as the optimal portfolio that accounts for errors. To 
measure the risk stability of each portfolio, we form a 
distribution of annual volatilities across all overlapping 
five-year windows in the historical sample and compute 
the spread between the maximum and minimum, as 
well as the spread between the 90th percentile and the 
10th percentile of this risk distribution. We focus on 
downside volatility (derived from semivariance) for the 
kinked utility because that utility function implies a 
much larger aversion to negative deviations than posi-
tive deviations.

The first notable observation is that accounting for 
stability has a substantial impact on optimal portfolio 
weights, whereas Bayesian shrinkage yields the same 
weights as ignoring errors. Exhibit 4 also reveals that 
the portfolios that account for the relative stability of 
covariances have the least dispersion in risk outcomes.12 
Exhibit 5 shows the distribution of realized volatility 
for each five-year subsample. During the global finan-
cial crisis, the risk of Bayesian or error-blind portfolios 
increased dramatically, but the stability-adjusted port-
folios suffered a much smaller increase in risk.

Stability-Adjusted Index Replication

We now evaluate the effect of relative stability on 
index replication. For this experiment, we randomly 
select two securities from each sector according to the 
Global Industry Classification Standard (GICS),13 and 
we seek to allocate to these securities for the purpose 
of minimizing tracking error relative to the S&P 500 
Stock Index. We use stability-adjusted weekly returns 
estimated over the period beginning January 2006 and 
ending January 2016. We set the subsample windows to 
equal one year, and we evaluate results over horizons of 
one quarter. We assume that each security has a known 

E X H I B I T  7
Inter-Quartile Range of Volatility and Correlation
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E X H I B I T  8
Index-Replication Weights and Performance

E X H I B I T  9
Realized Tracking Error for Historical One-Year Periods
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expected relative return equal to 0%, that the securities’ 
weights sum to 100%, and that the weight of the S&P 
500 Index is f ixed at −100%.14 We generate a sample 
of 1,000 returns for each error-adjusted, small-sample 
covariance matrix. Exhibit 6 lists the stocks selected for 
this experiment, and Exhibit 7 shows the relative sta-
bility of their volatilities and correlations.

Exhibit 8 shows the optimal allocations and dis-
persion of risk for portfolios that ignore errors, apply 
Bayesian shrinkage, and account for stability. Exhibit 9 
shows realized tracking error for all overlapping one-
year periods. It is interesting to note that the portfolios 
accounting for stability are identical for both power 
utility and kinked utility functions. In both cases, these 
portfolios have substantially less dispersion in volatility 
than the Bayesian shrinkage portfolios or those that 
ignore errors.

SUMMARY

We have introduced a methodology for incorpo-
rating estimation error in covariances into the portfolio 
formation process. In contrast to Bayesian approaches 
that attempt to mitigate estimation error by making 
the estimates more similar to each other, we propose 
that investors measure the relative stability of covari-
ances and form portfolios that explicitly account for this 
feature. Our approach will most likely cause covariance 
estimates to be less similar to each other.

We compute covariances from all independent 
subsamples of a chosen size and measure composite 
errors in these subsamples. These composite errors com-
prise small-sample error, independent-sample error, and 
interval error. We then add these errors to a base-case 
covariance matrix and, assuming normality, generate 
stability-adjusted return distributions for all subsamples. 
We then combine these distributions into a stability-
adjusted return distribution, which we show to be non-
normal.

We apply full-scale optimization, which accom-
modates non-normality as well as complex utility func-
tions, to the stability-adjusted return sample in order to 
derive optimal portfolios that account for asset-specific 
estimation error.

Because we account for the relative stability of errors 
in this way, these portfolio allocations differ significantly 
from those of portfolios that are blind to estimation error 
and portfolios that are modified by Bayesian approaches 

to estimation error. Moreover, portfolios that explicitly 
account for relative stability tend to have more stable risk 
than those that ignore errors or shrink them.

A P P E N D I X

If we are concerned only with errors in standard devia-
tions (and not correlations), it is possible to derive some 
useful and intuitive analytical results for mixture distribu-
tions. Assume that asset A’s returns are distributed according 
to a mixture of normal distributions with a mixing density 
(distribution of the variance parameter) that follows a scaled 
inverse chi-squared distribution (SIχ2). The SIχ2 distribution 
is a natural assumption for the distribution of the variance 
parameter because it does not permit negative values but has a 
shape that is roughly similar to that of a normal distribution—
especially if its own variance is small relative to its mean. The 
distribution has two parameters: ν and τ2, which both must be 
greater than zero. The parameter ν determines the shape of the 
distribution, while τ2 scales the distribution. The mean and 
variance of the SIχ2 distribution are given by the following:

 
( ) =) ντ

ν −
Mean

2

2

 ( ) ( ) ( )
=) ν τ

Variance
) (

2 4τ
2

We can calibrate the parameters of the SIχ2 distribution 
to historical data for asset A by computing the ratio of the 
standard deviation of σ2 to the mean of σ2 as a standardized 
measure of the instability of asset A’s variance:

( )
( ) = γ =

ν −
1

4

StandardDeviation

Mean

Therefore

ν =
γ

+1
42

Given these assumptions, it can be shown that the 
unconditional return distribution for asset A will be a 
t-distribution with ν degrees of freedom. When we apply 
well-known formulas for the variance and kurtosis of a 
t- distribution, it follows that

( )( ) ν
ν − 2

Variance M) = ν
eaMM n

( ) =
ν −

= γ6

4
6 2Excessee Kurtosis
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We can compute a multiplier for asset A’s variance 
equal to

( )
( )= = ν

ν −
= γ

+

γ
+2

1
4

1
2

2

2

Variance Multiplier
Variance

Mean

Taking the square root, we can obtain an approxima-
tion of the multiplier for the standard deviation (or volatility) 
of asset A as follows:

( )

( )
( )

( )
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≈ = γ
+

γ
+

1
4

1
2

2

2

Volatility Multiplier
Standard Deviation (

Mean

Standard Deviation (
Mean

Exhibit A1 shows the volatility multiplier and excess 
kurtosis as a function of the degree of standard deviation 
instability, γ.

This analysis shows that accounting for uncertainty in 
variance will have two effects on the unconditional returns 
of an asset’s distribution, compared to the normal distribu-
tion corresponding to its average variance. In particular, the 
distribution ref lecting uncertain variance will have higher 

volatility and also fatter tails (positive excess kurtosis). We 
could approximate these effects by simply increasing the stan-
dard deviation of each asset within a multivariate normal 
distribution to ref lect its degree of instability. To account 
for the excess kurtosis, however, we would have to relax 
the assumption of normality for asset returns. Nevertheless, 
adjusting the standard deviation for each asset in order to 
derive a new normal distribution that accounts for instability 
is a convenient approximation.

Unfortunately, this approach does not work for cap-
turing instability in the correlations between assets. The 
distributions that result from a mixture of multivariate 
normal distributions with different correlations may not be 
well-represented by any adjustment to the correlation coef-
ficients. For example, consider two assets that are sometimes 
0.8 correlated and sometimes −0.8 correlated. The uncondi-
tional correlation may be zero; however, a correlation of zero 
obscures the important fact that the assets sometimes move 
dramatically in the same direction, and sometimes move 
dramatically in opposite directions. This feature of returns is 
important for portfolio construction, because it implies that 
portfolios consisting of these two assets are likely to experi-
ence extreme tail events when the assets move in tandem. 
For this reason, we prefer to use an empirical approach to 
capture instability in the entire covariance matrix.

ENDNOTES

The material presented is for informational purposes 
only. The views expressed in this material are the views of 
the authors and are subject to change based on market and 
other conditions and factors. Moreover, they do not neces-
sarily represent the official views of MIT, Windham Capital 
Management, State Street Global Exchange, or State Street 
Corporation and its affiliates.

We thank Megan Czasonis for her helpful comments.
1If the risk measures pertain to units that are not directly 

investable, such as factors, then investors face an additional 
source of error referred to as mapping error. See Cocoma 
et al. [2015] for more detail about this issue.

2See Kinlaw, Kritzman, and Turkington [2014, 2015] 
for more details about this issue.

3For example, our original sample may comprise monthly 
returns, but our investment horizon may be five years. There-
fore, we would estimate the covariance matrix using five-year 
overlapping returns. We use log returns to calculate covari-
ance matrixes in order to remove the effect of compounding. 
In particular, we transform each return observation by taking 
the natural logarithm of one plus the return. The multiperiod 
compounded returns of a normally  distributed asset will be 
highly skewed due to compounding and therefore not nor-

E X H I B I T  A 1
Predicted Volatility Multiplier and Excess Kurtosis
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mally distributed; however, the logarithms of the long-period 
returns will be normally distributed.

4We use overlapping samples to mitigate the distortion 
that could be caused by choosing a particular start date with 
independent samples. For example, it could be that a par-
ticular period has very high risk and the subsequent period 
has very low risk. If we were to choose a start date such that 
we combined half of the first period with half of the subse-
quent period, we would not capture these extreme episodes 
of risk.

5We remove any strong directional bias from the dis-
tribution of errors by subtracting the median error from each 
individual subsample error.

6We should not use the full-sample covariance matrix 
as our base case, because the full sample embeds the small-
sample error of all the subsamples.

7Some of the subsample covariance matrixes may not 
be positive semi-definite. We therefore apply standard cor-
rections to render all covariance matrixes invertible.

8In addition to independence, the Central Limit The-
orem also assumes finite variances.

9See Cremers, Kritzman, and Page [2005] for more 
details on the full-scale optimization approach.

10Although it would be prohibitively challenging to test 
every possible asset mix in small increments, there are search 
algorithms that yield a reasonably reliable solution in a few 
seconds. A particular algorithm based on evolutionary biology 
initiates several searches simultaneously and iteratively termi-
nates those searches that are sure to fail, thus transferring the 
search energy to the remaining feasible searches.

11We identify these optimal portfolios by searching for 
the weights in increments of 5% in order to reduce the search 
cost. We allow the weights to range from 0% to 100%, and 
we require that they sum to 100%.

12The descriptive performance statistics we present are 
based on the same asset return history used to generate inputs 
to the optimization process. Therefore, these results do not 
constitute a true out-of-sample performance test. However, 

the results are substantially out-of-sample in the sense that 
our optimization inputs do not directly capture many features 
of the data. In particular, the optimization inputs capture 
the distribution of covariance matrixes that occurred in the 
data, but they do not capture information on the sequence of 
these covariance matrixes, nor do they capture the particular 
features of a distribution within any given subsample.

13GICS was developed by and is the exclusive property 
of MSCI Inc. and Standard & Poor’s. GICS is a service mark 
of MSCI and S&P and has been licensed for use by State 
Street.

14To reduce the search cost, we identify these optimal 
portfolios by searching for the weights in increments of 10%. 
We allow the weights to range from 0% to 20%, and we 
require that they sum to 100%.
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